
Harry Mumford-Turner (32297)

Photo Manipulation in the Cloud
Harry Mumford-Turner

Department of Computer Science
University of Bristol

hm16679@bristol.ac.uk

Abstract—Presenting a cloud application for photo manipula-
tion hosted on Google App Engine. The application can perform
various image manipulation tasks on a large number of photos.
The use case design demonstrates these tasks by first downloading
four photos from Instagram, resizing these photos and finally
composites them together to create a single photo. The application
can be run online at https://front-end-dot-ccinstapute.appspot.
com

I. INTRODUCTION

Photographers can take thousands of photos at a single
photoshoot event. The photos would be stored after the
event, wiped from the camera and each photo would usually
be retouched. For example, the photographer could want a
watermark to be placed on every photo, or to re-size photos
to certain dimensions. These tasks could be programmatically
performed using a application on a single computer. However,
these tasks such as resizing multiple photos all to the same
dimension, are ’Embarrassingly Parallel’, as it requires
little effort to split the problem into a smaller number of
parallel tasks. Where it is convenient to process each photo
at the same time as each photo does not depend on another,
therefore reducing the time for the overall task. When the
number of photos to process increases, it is possible to
process all of these photos on a more powerful machine,
however if more photographers wanted to process photos at
the same time, simply increasing the hardware of a single
machine to cope with this increase, is not a scalable solution
with increased costs, increased risk of loss from a single
computer failure and difficulty to handle an unstable load.
Our application copes with these issues by using a scalable
architecture. It processes each photo in parallel on multiple
machines in the Cloud hosted on Google App Engine. The
application scales horizontally by adding more processing
power for the application to account for the increase in users
and photos to process.

To demonstrate the architecture design of the application,
a basic implementation has been developed, limiting the
functionality to only two photo manipulation techniques on
four photos downloaded from the popular photo sharing
service Instagram [1]. An Instagram user can be identified,
four photos from a particular Instagram user are downloaded,
resized in half and composited onto each other to create a
single photo.

The application has been designed for scale by using

several microservices to complete the goal. ’Microservices
allow a large application to be decomposed into independent
constituent parts, with each part having its own realm
of responsibility’ [2]. Each microservice processes work
independently from one another and were built in the cloud
using Google App Engine, one of the leading providers
for Platform as a service (PaaS). This choice was ideal
because each microservice can be managed easily by the
App Engine and the application setup and configuration was
faster. ’Google App Engine is a scalable system which will
automatically add more capacity as workloads increase.’ [3].

II. IMPLEMENTATION

The application is written in Python with two frameworks
to ease the development of the microservices. Three
microservices were constructed to separate the application
into different parts, this utilised the Google Cloud Computing
benefits by autoscaling, load balancing, caching with
Memcache and managing instances for each service.
Therefore, when the load increased for a particular service,
that can be scaled accordingly. Google App Engine APIs
were used to create Task Queues for jobs and manipulate
photos. The Google App Engine Cloud Datastore and Storage
were used to store information about a job and to store
downloaded photos.

The application uses Flask [4] to aid with Python development
and WebApp2 [5] a web framework that is compatible with
the Google App Engine and provides easy routing. To create
a microservice, an app.yaml file specifying details about the
service and what libraries it depends on is required. The
interface between the client and the microservices is where
WebApp2 framework comes into play, it is a (Web Server
Gateway Interface) WSGI and results in an easy transfer of
information from web requests.

The program is made up with the following structure.
A Front End service, a Download Photos service and a
Manipulate Photos service. These three microservices work
independently from one another. They are created using a
simple python folder structure. A templates directory for
HTML templates, a static directory for all static files, such as
CSS files, a library folder accompanied with requirements.txt
to keep 3rd party libraries and finally the three microservices
each identified using the format, microservice-name.py and
microservice-name.yaml.



Users can start new jobs from the front-end service by
using an Instagram username and submitting a form. This
process starts a new job by creating a new Entity in cloud
storage and adds the job to a queue which is later processed
by the Download Photos microservice. Google has several
storage options on offer, a Google Cloud Datastore [7],
that stores data types for property values, the most efficient
solution to store simple variables for information about a job.
This data is then accessed throughout the application using a
unique identification for a job.

Google Cloud Storage [6] is the second cloud storage
option used. The Download Photos microservice processes
the queue and writes the downloaded photos to a bucket.
This bucket stores the Photos that are later processed by the
Manipulate Photo microservice.

A. Website Design

Fig. 1. User perspective of the Front End

In the above figure 1 when a user visits the landing page,
types in a username, then submits the form. A HTTP web
request is made to a WebApp2 function to start a new job,
/start-job, after a new job has been successfully created, the
user is redirected to the /render page loaded with information,
such as a unique identified about the newly created job. An
simple javascript refresh method was implemented to check
if the job has been completed, if it has not yet finished, it
refreshes the page. When the /render/username/job id route
is accessed, the job is loaded from Google Cloud Datastore,
using the unique identifier, the job id, to check if it has
completed. While this process is happening the front-end
service is not blocked and displays a loading icon to the user.

B. Front End Microservice

The WebApp2 function start-job in the front-end service
creates a new Entity with the given username, then creates a
unique key for that entity and uses that for the job identifier.
This identified is sent to a Push Task Queue [8] which is used
to queue up tasks, such as download these photos for this user,
or manipulate this photo. After the job has been queued the
user is redirected to the /render/username/job id url and the
render.html template is rendered. The other microservices will
process the jobs in the Task Queue, then populate the Entity
with the final result and change a completed flag in the Entity.
This means that multiple jobs can start at the same time and
makes the application scalable.

Fig. 2. Front-End Microservice overview

C. Download Photos Microservice

The Download Photos microservice /process-work function
gets called from the Download Photo Task Queue. It uses the
informationfrom the Task in the Queue, such as a URL to
a photo, to download the photos from a photo service, using
information about the job, in this case the Instagram username
to filter photos. Once one photo has been downloaded the
photo data is added to another Task Queue, this time for
Photo Manipulation, the data from the job is also added, so the
next microservice knows how to alter the photo. Configuration
limits for the number of photos to download at one time, and
the amount of photos to add to the queue are added, which
scale easily, due to the nature of microservices.

Fig. 3. Download Photos Microservice overview

D. Manipulate Photo Microservice

The /build-image function is called to process a photo
in the Photo Manipulation Task Queue. The information
is extracted from the Task and the photo is manipulated
accordingly. In this example, the photo is resized to a half
of its original size. Afterwards the photo is saved in a Cloud
Storage Bucket, its name and a completed flag are appended
into an array into the Entity based on the job id.



The functionality of this microservice can easily be extended
into multiple image manipulation techniques, however, third
party image processing libraries, such as PIL [9] are required.

Fig. 4. Manipulate Photo Microservice overview

E. Application Architecture

The overall architecture could be achieved in a single
service, however, this structure copes with sudden increase
loads in different parts of the system.

Fig. 5. Application Architecture

III. SCALABILITY ISSUES

The initial choice to use Google App Engine over
Amazon Web Services [10], proved effective when scaling.
Amazon EC2 IaaS option (Amazon Elastic Compute Cloud)
[11] does not scale automatically as it is simply a virtual

server. However, EC2 instances can be scaled using Auto
Scaling Elastic Load balancing, however a large amount of
administration work is required. With Google App Engine,
this process happens automatically, so is not the case.
This PaaS offering means users saves time in setting up
middleware, however flexibility is reduced because they
only have access to the services exposed by the particular
middleware that is combined in the platform.

The chosen cloud storage options scale well compared
with a traditional SQL database. Google App Engine Cloud
Datastore offers a managed NoSQL database that scales
automatically. However, with a NoSQL database there are
limitations with queries and transcations. ’If you update an
entity group too rapidly then your Datastore writes will have
higher latency, timeouts, and other types of error. This is
known as contention.’ [3].

Google App Engine provides lots of configuration about how
the automatic scaling behaves and has not be explored well
enough. For example, particular microservices could have
their settings adjusted for when their instances are served or
how the application handles delays in requests.

Google provides a caching system called MemCache to
speed up operations that frequently occur. This process is
automatic and will reduce the resource costs for running
the application. However, because the Google App Engine
tries to have little configuration to get started, tweaking the
configuration if the application has a regular load would be
beneficial for resource costs.

IV. CONCLUSION

Building an application using microservices is beneficial for
scaling, and is cost effective when the load on the different
microservices is unstable. Instapute demonstrates how multiple
photo downloads and manipulation can work in the cloud as
a scalable solution.

REFERENCES

[1] Instagram, Developer Documentation, 2016, https://www.instagram.com/
developer/

[2] Google, Microservices Architecture on Google App Engine https://cloud.
google.com/appengine/docs/go/microservices-on-app-engine

[3] Google, Designing an App for Scale, December 2013 https://cloud.
google.com/appengine/articles/scalability

[4] Flask, Python Micro Web Framework, April 2010 http://www.flask.pocoo.
org

[5] WebApp2, Python Web Framework for Google App Engine https://
webapp2.readthedocs.io/en/latest/

[6] Google, Entity Property Reference https://cloud.google.com/appengine/
docs/python/ndb/entity-property-reference

[7] Google, Entity Property Reference https://cloud.google.com/appengine/
docs/python/ndb/entity-property-reference

[8] Google, Push Task Queues https://cloud.google.com/appengine/docs/
python/taskqueue/push/

[9] PIL, Secret Labs AB, Python Imaging Library, December 1995 http://
www.pythonware.com/products/pil/

[10] Amazon, Web Hosting Amazon Web Services, 2016, https://aws.
amazon.com/websites

[11] Amazon, Amazon Elastic Compute Cloud, 2016, https://aws.amazon.
com/ec2/


